4. Median of Two Sorted Arrays
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
solution 1
merge array1 and array2, then return the median.
Time complexity: O(m+n)
Space complexity: O( m+n )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
| class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length; int n = nums2.length; int[] nums = new int[m+n]; if(m == 0){ if(n % 2 == 0){ return (nums2[n/2 - 1] + nums2[n/2]) / 2.0; }else{ return nums2[n/2]; } } if( n == 0){ if(m % 2 == 0){ return (nums1[m/2 -1] + nums1[m/2]) / 2.0; }else{ return nums1[m/2]; } } int count = 0; int i = 0; int j = 0; while(count != (m+n)){ if(i == m){ while( j != n){ nums[count++] = nums2[j++]; } break; } if(j == n){ while(i != m){ nums[count++] = nums1[i++]; } break; } if(nums1[i] < nums2[j]){ nums[count++] = nums1[i++]; }else{ nums[count++] = nums2[j++]; } } if(count %2 == 0){ return (nums[count/2 - 1] + nums[count/2]) / 2.0; }else{ return nums[count/2]; } } }
|